action.rl
Free Functions
Function:
can_apply_impl<FrameType, ActionType>(ActionType action, FrameType frame) -> Bool
Function:
apply<FrameType, ActionType>(ActionType action, FrameType frame)
Function:
apply<FrameType, ActionType>(Vector<ActionType> action, FrameType frame) -> Bool
Function:
parse_and_execute<FrameType, AllActionsVariant>(FrameType state, AllActionsVariant variant, Vector<Byte> input, Int read_bytes)
Function:
parse_actions<AllActionsVariant>(AllActionsVariant variant, Vector<Byte> input, Int read_bytes) -> Vector<AllActionsVariant>
Function:
parse_actions<AllActionsVariant>(AllActionsVariant variant, String input) -> Vector<AllActionsVariant>
Function:
parse_action_optimized<AllActionsVariant>(AllActionsVariant variant, Vector<Byte> input, Int read_bytes) -> Bool
parses actions taking only one byte and by taking taking the reminder of the parsed number divided by the number of actions, so that no action is ever marked as invalid
Function:
parse_actions<AllActionsVariant>(AllActionsVariant variant, Vector<Byte> input) -> Vector<AllActionsVariant>
Function:
parse_and_execute<FrameType, AllActionsVariant>(FrameType state, AllActionsVariant variant, Vector<Byte> input)
Function:
make_valid_actions_vector<FrameType, ActionType>(Vector<ActionType> all_actions, FrameType state) -> Vector<Byte>
Function:
get_valid_actions<FrameType, ActionType>(Vector<Byte> valid_actions, Vector<ActionType> all_actions, FrameType state)
Function:
gen_python_methods<FrameType, AllActionsVariant>(FrameType state, AllActionsVariant variant)
method that bust be present in binary to ensure that all methods
required by rlc-learn are available
Function:
load_action_vector_file<ActionType>(String file_name, Vector<ActionType> out) -> Bool
Function:
enumerate(Bool b, Vector<Bool> output)
Function:
enumeration_error(Int x, String out, Vector<String> context)
Function:
enumeration_error(Float x, String out, Vector<String> context)
Function:
enumeration_error<T>( x, String out, Vector<String> context)
Function:
enumeration_error<T, size : Int>(T[size] x, String out, Vector<String> context)
Function:
enumeration_error<T>(Vector<T> x, String out, Vector<String> context)
Function:
get_enumeration_errors_impl<T>(T obj, String out, Vector<String> context)
Function:
get_enumeration_errors<T>(T obj) -> String
Function:
print_enumeration_errors<T>(T obj) -> Bool
Function:
enumerate<T : Enum>(T b, Vector<T> output)
Function:
enumerate<T>(T obj) -> Vector<T>
Function:
write_in_observation_tensor(Int value, Int min, Int max, Vector<Float> output, Int index)
Function:
write_in_observation_tensor(Int obj, Int observer_id, Vector<Float> output, Int index)
Function:
size_as_observation_tensor(Int obj) -> Int
Function:
write_in_observation_tensor(Float obj, Int observer_id, Vector<Float> output, Int index)
Function:
size_as_observation_tensor(Float obj) -> Int
Function:
write_in_observation_tensor(Bool obj, Int observer_id, Vector<Float> output, Int index)
Function:
size_as_observation_tensor(Bool obj) -> Int
Function:
write_in_observation_tensor(Byte obj, Int observer_id, Vector<Float> output, Int index)
Function:
size_as_observation_tensor(Byte obj) -> Int
Function:
write_in_observation_tensor<T, X : Int>(T[X] obj, Int observer_id, Vector<Float> output, Int index)
Function:
size_as_observation_tensor<T, X : Int>(T[X] obj) -> Int
Function:
write_in_observation_tensor<T>(Vector<T> obj, Int observer_id, Vector<Float> output, Int index)
Function:
size_as_observation_tensor<T>(Vector<T> obj) -> Int
Function:
write_in_observation_tensor<T, max_size : Int>(BoundedVector<T, max_size> obj, Int observer_id, Vector<Float> output, Int index)
Function:
size_as_observation_tensor<T, max_size : Int>(BoundedVector<T, max_size> obj) -> Int
Function:
write_in_observation_tensor<min : Int, max : Int>(BInt<min, max> obj, Int observer_id, Vector<Float> output, Int index)
Function:
size_as_observation_tensor<min : Int, max : Int>(BInt<min, max> obj) -> Int
Function:
write_in_observation_tensor<min : Int, max : Int>(LinearlyDistributedInt<min, max> obj, Int observer_id, Vector<Float> output, Int index)
Function:
size_as_observation_tensor<min : Int, max : Int>(LinearlyDistributedInt<min, max> obj) -> Int
Function:
to_observation_tensor<T>(T obj, Int observer_id, Vector<Float> output)
Function:
to_observation_tensor<T>(T obj, Int observer_id, Vector<Float> output, Int written_bytes)
Function:
to_observation_tensor<T>(T obj, Int observer_id) -> Vector<Float>
Function:
observation_tensor_size<T>(T obj) -> Int
Function:
write_tensor_warning_context(String out, Vector<String> context)
Function:
tensorable_warning(Int x, String out, Vector<String> context)
Function:
tensorable_warning(Float x, String out, Vector<String> context)
Function:
tensorable_warning<T>( x, String out, Vector<String> context)
Function:
tensorable_warning<T, size : Int>(T[size] x, String out, Vector<String> context)
Function:
tensorable_warning<T>(Vector<T> x, String out, Vector<String> context)
Function:
to_observation_tensor_warnings<T>(T obj) -> String
Function:
emit_observation_tensor_warnings<T>(T obj)
Traits
Trait ApplicableTo
Function:
apply(ActionType action, FrameType frame)
Trait Enumerable
trait that must be implemented by a type to enumerate all
possible values of that types (ex: enumerate(bool) return
{true, false})
this is used by machine learning techniques that need to
enumerate all possible actions.
Function:
enumerate(T obj, Vector<T> output)
Trait Tensorable
trait that must be implemented to specify how
a given type is to be converted into a tensor
for machine learning consumptions. The encoding
should be, when possible, one-hot encoding.
Function:
write_in_observation_tensor(T obj, Int observer_id, Vector<Float> output, Int counter)
Function:
size_as_observation_tensor(T obj) -> Int
Trait CustomTensorWarnings
Function:
tensorable_warning(T x, String out, Vector<String> context)